03

The Egyptian fractions

Topic: Calculation
Theme: Fractions
Abilities: Use fractions - simplification Material: None Level: Age 14/18

In ancient times, the Egyptians calculated with natural numbers and fractions. Regarding fractions, they only used $\frac{2}{3}$ and the inverses of integers (for instance, the inverse of 4 is $\frac{1}{4}$). ${ }^{3}$

Let's calculate like an Egyptian !

Writing numbers in hieroglyphs

Powers of ten decimal writing	1	10	100	1000	10000	100000	1000000
Powers of ten hieroglyphic writing	1		©	茪	A	S_{n}	[1]

It is an additive system. Thus, 23 was written 2 tens plus 3 units, as follows:

$$
\int \cap\left|\left|\left\lvert\, \frac{1}{3} \quad \frac{1}{21}\right.\right.\right.
$$

The fraction $\frac{1}{3}$ and $\frac{1}{21}$ were written:

$$
\left\|_{\|}=\frac{1}{3}\right\| \cap=\frac{1}{21}
$$

(The sign o is put above the 3 to denote its inverse)
Write these fractions in hieroglyphs:

$$
\begin{aligned}
& \frac{1}{5}= \\
& \frac{1}{36}=
\end{aligned}
$$

The Eye of Horus

In Egyptian mythology, Seth (the god of violence) snatched an eye from his nephew Horus (the falcon-headed god).
He divided it into 6 pieces and threw them into the Nile.
This eye is called Oudjat

The six pieces can be :

- The left side of the eye $\frac{1}{2}$
- The pupil $\frac{1}{4}$
- The eyebrow $\frac{1}{8}$
- The right side of the eye $\frac{1}{16}$
- The curved tail $\frac{1}{32}$
- The teardrop $\frac{1}{64}$

It is said that Thot (human God) restored the eye, symbol of good against evil, but the sum of these parts is not equal to 1 (the whole eye). He granted the missing part to any scribe seeking and accepting his protection.

Calculate the sum A of the fractions of the Oudjat and give the missing part!

Writing fractions

The Egyptians expressed other fractions by combining these kinds of fractions, all different ones.

For example, for $\frac{47}{60}=$
$\frac{47}{60}=\frac{20}{60}+\frac{15}{60}+\frac{12}{60}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}$

Check that: $\frac{2}{2 n+1}=\frac{1}{(n+1)}+\frac{1}{(n+1)(2 n+1)}$

Apply this formula to $\frac{2}{7}=$
$\frac{2}{7}=$
Multiply numerator and denominator by 2, then complete the calculation to obtain a sum of distinct Egyptian fractions:
$\frac{4}{5}=$ $\frac{5}{9}=$
$\frac{6}{11}=$
Write $\frac{25}{26}$ as a sum of distinct Egyptian fractions.
$\frac{25}{26}=$

