

The Egyptian fractions

Topic: Calculation Theme: Fractions Abilities: Use fractions - simplification Material: None Level: Age 14/18

In ancient times, the Egyptians calculated with natural numbers and fractions. Regarding fractions, they only used $\frac{2}{4}$ and the inverses of integers (for instance, the inverse of 4 is $\frac{1}{4}$).³

Let's calculate like an Egyptian !

Writing numbers in hieroglyphs

Powers of ten decimal writing	1	10	100	1000	10000	100000	1000000
Powers of ten hieroglyphic writing		\cap	0	ې ۲	A	5a	

It is an additive system. Thus, 23 was written 2 tens plus 3 units, as follows:

The fraction $\frac{1}{3}$ and $\frac{1}{21}$ were written: **0** 1 **0** 1

 $\prod_{i=1}^{n} = \frac{1}{3} \bigcap_{i=1}^{n} = \frac{1}{21}$

(The sign \bigcirc is put above the 3 to denote its inverse)

Write these fractions in hieroglyphs :

$$\frac{1}{5} = \frac{1}{1532} = \frac{1}{36} =$$

The Eye of Horus

In Egyptian mythology, Seth (the god of violence) snatched an eye from his nephew Horus (the falcon-headed god). He divided it into 6 pieces and threw them into the Nile. **This eye is called Oudjat**

It is said that Thot (human God) restored the eye, symbol of good against evil, but the sum of these parts is not equal to 1 (the whole eye). He granted the missing part to any scribe seeking and accepting his protection.

Calculate the sum A of the fractions of the Oudjat and give the missing part!

Writing fractions

The Egyptians expressed other fractions by combining these kinds of fractions, all different ones.

For example, for
$$\frac{47}{60} =$$

$$\frac{47}{60} = \frac{20}{60} + \frac{15}{60} + \frac{12}{60} = \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$$

Check that:
$$\frac{2}{2n+1} = \frac{1}{(n+1)} + \frac{1}{(n+1)(2n+1)}$$

Apply this formula to
$$\frac{2}{7} = \frac{2}{7} =$$

Multiply numerator and denominator by 2, then complete the calculation to obtain a sum of distinct Egyptian fractions :

$$\frac{4}{5} = \frac{5}{9} =$$

$$\frac{6}{11} =$$
Write $\frac{25}{26}$ as a sum of distinct Egyptian fractions.
$$\frac{25}{26} =$$